skip to main content


Search for: All records

Creators/Authors contains: "Ardón, Marcelo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Seawater intrusion into freshwater wetlands causes changes in microbial communities and biogeochemistry, but the exact mechanisms driving these changes remain unclear. Here we use a manipulative laboratory microcosm experiment, combined with DNA sequencing and biogeochemical measurements, to tease apart the effects of sulfate from other seawater ions. We examined changes in microbial taxonomy and function as well as emissions of carbon dioxide, methane, and nitrous oxide in response to changes in ion concentrations. Greenhouse gas emissions and microbial richness and composition were altered by artificial seawater regardless of whether sulfate was present, whereas sulfate alone did not alter emissions or communities. Surprisingly, addition of sulfate alone did not lead to increases in the abundance of sulfate reducing bacteria or sulfur cycling genes. Similarly, genes involved in carbon, nitrogen, and phosphorus cycling responded more strongly to artificial seawater than to sulfate. These results suggest that other ions present in seawater, not sulfate, drive ecological and biogeochemical responses to seawater intrusion and may be drivers of increased methane emissions in soils that received artificial seawater addition. A better understanding of how the different components of salt water alter microbial community composition and function is necessary to forecast the consequences of coastal wetland salinization.

     
    more » « less
  2. While many instructors have reservations against Wikipedia use in academic settings, editing Wikipedia teaches students valuable writing, editing, and critical thinking skills. Wikipedia assignments align with the community of inquiry framework, which focuses on the elements needed for a successful online learning experience. We report on a faculty mentoring network, created by WikiProject Limnology and Oceanography, which helped 14 instructors with little to no prior experience implement a Wikipedia assignment in their classes. We found that Wikipedia assignments increase students’ motivation to produce high quality work and enhance their awareness of reliable scientific sources. Wikipedia assignments can be comparable to other writing assignments in length and complexity, but have a far wider audience than a traditional research paper. Participants in our mentoring network reported challenges with implementing this new type of assignment, and here, we share resources and solutions to those reported barriers. 
    more » « less
  3. Abstract

    Ecosystem metabolism of freshwater ecosystems has been studied for several decades, with theory and synthesis largely derived from temperate streams and rivers in North America and Europe. Advances in sensor technology and modeling have opened a wider range of streams to be included to test theories beyond temperate streams. In this paper, we review and synthesize ecosystem metabolism data from tropical streams and rivers to determine to what extent the constraints of metabolism measured in temperate streams are similar in tropical streams. We compiled 202 measurements of gross primary productivity (GPP) and ecosystem respiration (ER) from 83 tropical streams spanning 22.2°S to 18.4°N. Overall, tropical streams were heterotrophic (ER > GPP), with GPP ranging from 0.01 to 11.7 g O2m−2d−1and ER ranging from −0.2 to −42.1 g O2m−2d−1, similar on average to rates reviewed from temperate streams, but with higher maximum ER in tropical streams. Gross primary productivity increased with watershed area; a result also observed in temperate streams. ER decreased with elevated phosphorus and higher annual rainfall. We constructed a structural equation model that explained greater variation of ER (74%) than GPP (26%), and reflects similar drivers, such as land‐use and watershed area, as in temperate streams. We conclude that tropical stream ecosystem metabolism has similar drivers as temperate streams, and a warmer and wetter climate and human use of tropical lands will influence metabolic rates in streams.

     
    more » « less
  4. Abstract

    Disturbances can alter the structure and function of ecosystems. In stream ecosystems, changes in discharge and physicochemistry at short, intermediate, and long recurrence intervals can affect food webs and ecosystem processes. In this paper, we compare pH regimes in streams at La Selva Biological Station, Costa Rica, where episodic acidification frequency across the stream network varies widely due to buffering from inputs of bicarbonate‐rich interbasin groundwater. To examine the effects of acidification on ecosystem structure and function, we experimentally increased the buffering capacity of a headwater stream reach and compared it to an unbuffered upstream reach. We compared these reaches to a naturally buffered and unbuffered reaches of a second headwater stream. We quantified ecosystem structural (macroinvertebrate assemblages on leaf litter and coarse woody debris) and functional responses (leaf litter and coarse woody debris decomposition rates, and growth rates of a focal insect taxon [Diptera: Chironomidae]). Non‐metric multidimensional scaling and analysis of similarity revealed that macroinvertebrate assemblages were relatively homogenous across the four study reaches, although the naturally buffered reach was the most dissimilar. Ecosystem function, as measured by chironomid growth rates, was greater in the naturally buffered reach, while decomposition rates did not differ across the four reaches. Our results indicate that biological assemblages are adapted to pH regimes of frequently acidified stream reaches. Our experiment informs the effects on structure and function at short time scales in streams that experience moderate acidification, but larger magnitude acidification events in response to hydroclimatic change, as projected under climate change scenarios, may induce stronger responses in streams.

     
    more » « less
  5. Wardle, David (Ed.)